Multiscale analysis of the laser-induced damage threshold in optical coatings.

نویسندگان

  • Jérémie Capoulade
  • Laurent Gallais
  • Jean-Yves Natoli
  • Mireille Commandré
چکیده

We have investigated the influence of laser beam size on laser-induced damage threshold (LIDT) in the case of single- and multiple-shot irradiation. The study was performed on hafnia thin films deposited with various technologies (evaporation, sputtering, with or without ion assistance). LIDT measurements were carried out at 1064 nm and 12 ns with a spot size ranging from a few tens to a few hundreds of micrometers, in 1-on-1 and R-on-1 modes. These measurements were compared with simulations obtained with the statistical theory of laser-induced damage caused by initiating inclusions. We show how to obtain information on the initiating defect properties and the related physical damage mechanisms with a multiscale study. Under certain conditions, it is possible with this method to discriminate different defects, estimate their densities, and follow the evolution of the defects under multiple irradiation. The different metrology implications of our approach, particularly for obtaining a functional LIDT of optical components are discussed.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Suppression of nano-absorbing precursors and damage mechanism in optical coatings for 3ω mirrors.

Damage precursors in the 3ω (351 nm) mirror for a high-power laser system are investigated as well as the relevant damage mechanisms. The precursors are classified into two ensembles according to the different laser resistance and damage features. The former is nano-absorbing precursors, which are sensitive to the standing wave electric field and vulnerable to the laser irradiation. The latter ...

متن کامل

Comparative study of IR and UV laser damage resistance of silica thin films deposited by Electron Beam deposition, Ion Plating, Ion Assisted Deposition and Dual Ion Beam Sputtering

The laser damage resistance of optical coatings is a critical point for a large number of applications. However improving this resistance is often hard to obtain because of the large number of parameters in the deposition processes than can modify the laser damage threshold and the lack of detailed and exploitable studies published on this subject. Then, the aim of this work is to test and anal...

متن کامل

Evaluating the thermal damage resistance of graphene/carbon nanotube hybrid composite coatings

We study laser irradiation behavior of multiwalled carbon nanotubes (MWCNT) and chemically modified graphene (rGO)-composite spray coatings for use as a thermal absorber material for high-power laser calorimeters. Spray coatings on aluminum test coupon were exposed to increasing laser irradiance for extended exposure times to quantify their damage threshold and optical absorbance. The coatings,...

متن کامل

Analysis of the theory of thermal damage in biological tissues caused by Laser beam

Introduction: In laser surgery, the laser beam can evaporate and cut the tissue like a small surgical knife when the tissue temperature is heated to 100 degrees Celsius. a complete understanding of the distribution of damage in both pathologic tissue and surrounding tissue is necessary. Although the test is the most realistic solution for treating medical problems, for this rea...

متن کامل

Diagnostics for the Detection and Evaluation of Laser Induced Damage

The Laser Damage and Conditioning Group at LLNL is evaluating diagnostics which will help make damage testing more efficient and reduce the risk of damage during laser conditioning. The work to date has focused on photoacoustic and scattered light measurements on 1064-nm wavelength Hf@/Si02 multilayer mirror and polarizer coatings. Both the acoustic and scatter diagnostics have resolved 10 pm d...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Applied optics

دوره 47 29  شماره 

صفحات  -

تاریخ انتشار 2008